Course Titl	BIOLOGY	FOR	ENGIN	NEERS	8	B. Tech. CE,ME & EEE -III Sem ECE & CSE - IV Sem								
Course Cod	e Category	He	ours/We	eek	Credits	M	aximum]	Marks						
1823301	BSC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total						
		2			2	30	70	100						
Mid Exam I	uration: 2Hrs					End Exam Duration: 3Hrs								
Course Obje	ctives:													
Introc	uction to Basics	of Biolo	gy whic	h incluc	les cell, th	e unit of life, I	Different	types of cells and						
classi	fication of living of	organisn	ıs.											
• Unde	standing what ar	e biomo	lecules j	present	in a cell, t	heir structure	function a	and their role in a						
living	living organism. Application of certain bio molecules in Industry.													
• Brief	 Brief introduction to human physiology, which is essential for bioengineering field. 													
• Unde	standing the here	ditarv u	nits. that	t is gene	es and gen	etic materials (DNA and	RNA) present in						
living	organisms and	how th	ev renl	icate ar	nd mass a	nd preserve v	vital infor	mation in living						
organ	isms	now u	ley repr	ieute ui	ia puss a	na preserve v	itur initor	ination in nying						
- Harri	biology oon he on		d.:1.	1:6	ing differen		for ano der	otion of						
• How	biology can be ap	plied in	our daily	y me us	ing differe	nt technology,	for produce	ction of						
media	tines to transgenic	plants a	and anim	hals to d	esigning n	ew biotechnolo	ogical prod	ducts						
Course Out	omes: On success	sful com	nletion	of this c	ourse the	students will h	e able to							
CO 1 Def	ing the cells its st	ructure	and fund	tion an	d Differen	t types of cells	and basis	for						
	sification of livir	g organ	isms	and and an		it types of cens	and Dasis	101						
		ig organ	51115.											
CO 2 Exj	olain about biomo	lecules i	ts struct	ure and	function a	nd their role in	a living c	organism						
Но	v biomolecules ar	e useful	in Indus	stry & e	xplain abo	ut human phys	iology.							
	nonstrate the cor	cent of	hiology	and its	uses in co	mbination wit	h differen	t technologies for						
		icept of	biology			momation wit		t technologies 101						
pro	duction of medicin	nes and j	producti	on of tra	ansgenic pl	lants and anima	als.							
CO 4 Illu	strate about gene	s and ge	netic ma	aterials	(DNA & R	RNA) present in	n living or	rganisms and how						
the	replicate, transfe	r & pres	erve vit	al inforr	nation in li	iving organism	s.	0						

<u>UNIT-I</u>

Introduction to Basic Biology

Cell: What is a Cell, Cell theory, Cell shapes, structure of a Cell, Cell cycle chromosomes The Plant Cell and animal Cell, protoplasm, prokaryotic and eukaryotic Cell, Plant Tissue and Animal Tissue. Brief introduction to five kingdoms of classification.

<u>UNIT-II</u>

Introduction to Bio-molecules

Carbohydrates, proteins, Amino acid, nucleic acid (DNA and RNA) and their types. Enzymes and their application in Industry. Large scale production of enzymes by Fermentation.

UNIT-III

Human Physiology

Nutrition (Classes of nutrients or food substances), Digestive systems, Respiratory system (two kinds of respiration – aerobic and anaerobic) Respiratory organs, respiratory cycle. Excretory system

UNIT-IV

Genes, Replication of DNA, And Introduction to recombinant DNA Technology:

Prokaryotic gene and Eukaryotic gene structure, gene replication, Transcription and Translation in Prokaryote and Eukaryote and synthesis of protein in Eukaryotes. Recombinant DNA technology and cloning introduction.

<u>UNIT-V</u>

Application of Biology

Brief introduction to Production of vaccines, Enzymes, antibodies, Cloning in microbes, plants and animals, Basics of biosensors, biochips, Bio fuels, and Biosensors. What is Tissue engineering? And its application, transgenic plants and animals, Bio engineering (production of artificial limbs, joints and other parts of body).

Text Books:

- 1. Cell and Molecular Biology-P.K.Gupta
- 2. Cell Biology-Verma and Agarwal
- 3. Cell Biology-Rastogi
- 4. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2018.
- 5. T Johnson, Biology for Engineers, CRC press, 2011 Molecular Biology and Biotechnology 2nd ed. J.M. Walker and E.B. Gingold. Panima Publications. PP 434.

- 1. AlbertsEt.Al. The molecular biology of the cell, 6/e, Garland Science, 2014
- 2. De Robertis EDP & EMF De Robertis. 2001. Cell and Molecular biology. Lippincott Williams &Wilkins.Bombay.
- 3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
- 4. John Enderle and Joseph Bronzino Introduction to Biomedical Engineering, 3/e, 2012 Principles of Biochemistry. 2nd ed. 1993. A.L. Lehninger, D.L.Nelson.M.Cox. Paniama Publications. PP. 1090.
- 5. Harper's biochemistry. 1988. R.K. Murray. D.K. Granner, P.A. Mayes. Printice Hall International.
- 6. Introductory Microbiology. 1995, by Trevor Gross.
- 7. Molecular Biology by G. Padmanabhan, K. SivaramSastry, C. Subramanyam, 1995, Mac Millan.
- 8. Biochemistry of Nucleic Acids.1992.11thed.R.L.P.Adams.J.T.Knowler.D.PLeader.Chapman and Hall.
- 9. Genetic Engineering –SandhyaMitra.
- 10. Molecular Biology and Biotechnology by Meyers, RA, A comprehensive Desk reference (VCH Publishers).

Course Title	NUMI PR	ERICA OBABI STAT	L ME LITY ISTIC	THC ANI CS	DDS, D	B. Tech. III Sem (Common to CE & ME Branches)				
Course Code	Category	Hou	rs/Wee	k	Credits	Μ	faximum Marks			
1821302	BSC	L T P		С	Continuous Internal Assessment	End Exams	Total			
		3	0		3	30	70	100		
Mid Exam Du	ration: 2Hrs					End Exam Du	ration: 3Hr	S		

Course Objectives:

The objective of this course is to familiarize the students with numerical methods of solving the nonlinear equations, interpolation. Also to impart knowledge in basic concepts and few techniques in probability and statistics in relation to the engineering applications.

Course	Outcomes: On successful completion of this course, the students will be able to
CO 1	Determine the roots of polynomial and transcendental equations by different methods. (L3)
CO 2	Apply discrete and continuous probability distributions.(L3)
CO 3	Demonstrate the components of a classical hypothesis test. (L3)
CO 4	Infer the statistical inferential methods based on small and large sampling tests. (L4)

<u>UNIT I</u>

Solution of algebraic and transcendental equations: Bisection method – False - position method – Newton - Raphson method. **Solution of System of equations:** Jacobi's iteration method – Gauss- Seidel iteration method.

Learning Outcomes:

After completion of this unit student able to

- find approximate roots of an equation by using different numerical methods
- find solution of system of equations by using different numerical methods

<u>UNIT II</u>

Interpolation: Finite differences - Forward differences - Backward differences - Newton's forward and backward difference formulae for interpolation - Lagrange's formula for unequal intervals- Inverse interpolation.

Learning Outcomes:

After completion of this unit student able to

- explain various discrete operators and find the relation among operators
- apply Newton's forward and backward formulas for equal intervals
- apply Lagrange's formula to find inverse interpolation

<u>UNIT III</u>

Probability: Explaining basic concepts of Random variables (Without Problems) - Probability distributions: Binomial - Poisson approximation to the binomial distribution and normal distribution-their properties.

Learning Outcomes:

At the end of this unit, the student will be able to

- apply Binomial and Poisson distributions for real data to compute probabilities, theoretical frequencies
- interpret the properties of normal distribution and its applications.

<u>Unit IV</u>

Testing of Hypothesis: Formulation of null hypothesis, critical regions, level of significance. Large sample tests. Tests based on normal distribution –z -test for means and proportions.

Learning Outcomes:

At the end of this unit, the student will be able to

- explain the concept of estimation, interval estimation and confidence intervals
- apply the concept of hypothesis testing for large samples

<u>UNIT V</u>

Small Sample Tests: t-test for one sample, two samples problem and paired t-test. F-test - Chi-square test (testing of goodness of fit and independence).

Learning Outcomes:

At the end of this unit, the student will be able to

- apply the concept of testing hypothesis for small samples to draw the inferences
- estimate the goodness of fit

Textbooks:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.
- 2. P. Kandasamy, K. Thilagavathy, K. Gunavathi, Numerical Methods, S. Chand & Company, 2/e, Reprint 2012.

References:

- 1. Veerarajan T., Engineering Mathematics, Tata McGraw-Hill, New Delhi, 2008.
- 2. Erwin kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2			2							1
CO2	1	2			2	2						
CO3	2	2			2							1
C04		2				2						1

Course 7	ſitle	Basic Mech	anical	Engin	eering		B. Tech. ME	III Sem						
Course C	Code	Category	Ho	ours/We	ek	Credits	Ma	ximum M	larks					
18033	03	РС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total					
			2	1	0	3	30	70 100						
Mid Exar	m Dur	ation: 2Hrs					End Exam	Duration	n: 3Hrs					
Course O	bjecti	ves:												
• T	The thermodynamic laws used in Mechanical engineering applications													
• V	Various Applications of Energy conversion devices													
• N	leed of	refrigeration a	nd air co	ondition	ing to th	e societv a	and global war	ming effec	ets.					
	ifform	t Types of nov	von nlont	a motor	iolo ond	Variana n	anufacturin a r	mathada						
• D	merei	it Types of pow	er plan	s, mater	Tais and	v arrous n		nethous.						
			C 1	1	6.1.	.1	. 1	11 /						
Course O	outcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will be	e able to						
CO 1	Define	principles of the	nermody	mamics	and app	ply the san	ne to energy co	nversion o	levices					
CO 2	Use the fundamentals and principles of refrigeration to practical applications.													
CO 3	Descri	be power plant	s and U	nder sta	nd manu	ufacturing	processes.							
CO 4	Analyze machining parameters for different machines.													
II														

Unit 1: Thermodynamics Thermodynamic work, p-dV work in various processes, p-V representation of various thermodynamic processes and cycles Ideal gas equations, Properties of pure substance, Statements of I and II laws of thermodynamics and their applications in Mechanical Engineering.

Unit 2 : Energy conversion devices (Theoretical study using schematic diagrams only) Types of Boilers, Turbine(Impulse & Reaction turbine, Gas turbine, Hydraulic turbines), Working principle of two stroke and four stroke I.C. Engines (SI and CI), Fuels, CRDI, MPFI, Hybrid Engines, Reciprocating pumps, centrifugal pumps and hydraulic Pump.

Unit 3 : Refrigeration and Air Conditioning: Vapour compression refrigeration systems, Heat Pump, COP, Study of household refrigerator, Energy Efficiency Rating, Psychrometry, Psychrometric processes, window air conditioner, split air conditioner. Refrigerants and their impact on environment. .(Elementary ideas only)

Unit 4. Power Plants (Description with Block Diagrams) Thermal, Hydroelectric, Nuclear and Solar-Wind Hybrid Power Plants. Materials and manufacturing processes: Engineering materials, Classification, properties, Casting, Sheet metal forming, Sheet metal cutting, Forging, Rolling, Extrusion; Metal joining processes - soldering, brazing and welding; (Elementary ideas only).

Unit 5: Mechanisms: (Descriptive treatment only) Slider crank mechanism, Four bar chain mechanism, Machine Tools (Basic elements, Working principle and types of operations) Lathe Machine – Centre Lathe ,Drilling Machine –Introduction to NC and CNC machines

References :

Text Book: 1. P. K Nag "Thermodynamics", Tata McGraw-Hill Publishing Co. Ltd

- 2. Clifford, M., Simmons, K. and Shipway, P., An Introduction to Mechanical Engineering Part I - CRC Press
- 3. Palany swamy Basices of civil and Mechanical Enginering

- 1. Arora and Domkunwar, "Thermal Engineering", Dhanpat Rai and Sons.
- 2. Balachandran, Basic Mechanical Engineering, Owl Books
- 3. Benjamin, J., Basic Mechanical Engineering, Pentex Books

Course Title	En	ginee	ring N	lechar	nics		B. Tec	ch, CE 3 rd	Semester		
Course	Category	L	Т	Р	Credits		Maximum	n Marks			
Code						Continu	ous Internal	End	Total		
						Ass	sessment	Exam			
1801304	PCC	03	01	00	04		30	70	100		
Mid Exan	n Duration:	02.00 H	Hrs				End Exam I	Duration: (03.00 Hrs		
Ex co Di rov Un Di Un Un an	xplain basic nditions scuss variou ugh planes nderstand the stinguish be nderstand the y axes.	principus type e assur tween e conc	ples de es of fr nptions centroi ept of	scribin iction, in the d, centrarea mo	g the equ laws of f analysis o re of mass oment of	ilibrium riction ar f trusses and cent inertia ar	of system of nd analyse boo and list the typ re of gravity nd mass mome	forces und dy/bodies pes of truss ent of iner	der static lying on ses. tia about		
Course O	outcomes: C	n succ	essful o	comple	tion of thi	s course,	the student wi	ll be able	to		
CO 1	Understand Analyse co- mechanics c	the co planar f engir	oncept and n heering	of for on-cop applica	ces and lanar syst ations	apply the em of fo	e static equil prces and app	ibrium co ly the cor	onditions, neepts of		
CO 2	Analyze the	frictio	nal for	ces to n	naintain th	e equilib	rium of systen	ns.			
CO 3	Determine the axial forces in the members of determinate truss.										
CO 4	Identify the principle of	locatio momen	on of contract	enter of	f gravity a	ind mom	ent of inertia	of a body	by using		
CO 5	Understand the engineering systems to prepare and demonstrate the models with the help of mechanics concept to solve the engineering problems.										

Unit – 1

Forces, Moments, Equilibrium: Introduction to Engineering Mechanics, Basic Concepts. System of forces: Classification of a force system -Coplanar forces, concurrent forces, Resultant, Moment of forces and its application, Varignon's principle, Couples and resultant of force system.

Equilibrium of systems of forces: Free body diagrams, equations of equilibrium of coplanar systems, Lami's theorem, Converse of the law of triangle of forces, converse of the law of polygon of forces, law of transmissibility of forces – Principle of superposition, conditions of equilibrium.

Unit – 2

Friction: Introduction, Types of friction, Laws of Solid friction, Definitions- coefficient of friction, Angle of friction, Angle of repose. Equilibrium of a body on horizontal rough plane-under horizontal & inclined force. Equilibrium of a body on a rough inclined plane- with force acting parallel to the plane and inclined to the plane. wedge friction - ladder friction, screw friction , lifts by a simple screw jack with square threads

Unit – 3

Reactions in Beams: Types of loads, supports and beams – Support reactions for simply supported beams, cantilever and overhanging beams subjected to different types of loads ie Point load, UDL, UVL, Couple.

Analysis of Trusses: Introduction, Classification of trusses, Assumptions made in the analysis of perfect truss, Determination of Forces in members of plane, pin-jointed, perfect trusses by (i) method of joints and (ii) method of sections. Analysis of various types of cantilever and simply supported trusses by method of joints and method of sections. How to determine if a member is in tension or compression; Zero force members.

Properties of surfaces and Solids (Centroid, Centre of Mass, Centre of Gravity): Determination of Areas and volumes, first moment of area and the centroid of sections- Rectangle, circle & triangle from method of integration, Composite sections: T-section, I-section, Angle Sections, Hollow Section by using standard formula, Pappu's theorems.

Unit – 5

Moment of inertia: Introduction, Second and product moments of plane area. Parallel Axis theorem, Perpendicular axis theorem, Moment of inertia of regular sections and composite sections by using standard formula. Polar moment of inertia, moment of inertia about inclined axis, principal moments of inertia of plane areas, Principal axes of inertia.

Mass Moment of Inertia: Derivation of mass moment of inertia for rectangular section, circular section, prism, cylinder, Cone, Sphere and Hook from first principles. Relation to area moments of inertia.

TEXT BOOKS

- 1. R.K. Bansal, "A Textbook of Engineering Mechanics", Laxmi Publications, New Delhi.
- 2. Shames and Rao, "Engineering Mechanics", Pearson Education India, New Delhi.

REFERENCE BOOKS

- 1. Thimoshenko & Young, "Engineering Mechanics", Tata McGraw-Hill Companies, Inc. New York.
- 2. Bhavikatti and Rajasekharappa, "Engineering Mechanics", New Age International (P) Limited, Publishers, New Delhi.
- 3. B.C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, "Mechanics of materials", Laxmi Publications, New Delhi.
- 4. R.K.Rajput, "Applied Mechanics", Laxmi Publications, New Delhi.

Course Title	S	Survey	ying a	nd Geo	omatics]	B. Tech, C	E 3 rd Semester				
Course	Category	L	Т	Р	Credits		Maxim	um Marks					
Code						Continu Ass	ous Internal	End Exam	Total				
1801305	PCC	02	01	00	03	30 70 100							
Mid Exar	n Duration:	02.00 H	Hrs				End E	xam Durat	ion: 03.00 Hrs				
Course C	bjectives:												
• Be	e familiar w	ith Ch	ain an	d Com	pass in m	easuring	the horizonta	and vert	ical distances,				
ca	lculating sin	nple ar	eas and	l correc	ting differ	ent errors	8.						
• Id	Identify the level instruments; record the levels in field book and determine the elevations of												
ot	objects by different methods.												
• De	etermine the	areas a	and vol	umes o	on the field	l by diffe	rent methods.						
• Se	et out simpl	le, con	npound	and r	everse cu	rves for	highway and	l railway j	projects using				
ele	ectronic tota	l statio	n (ETS).									
• Co	ollection of	data 1	egardi	ng vari	ious objec	ets on th	e ground usin	ng photog	rammetry and				
re	mote sensing	g.											
Course C	outcomes: C	n succ	essful o	comple	tion of thi	s course,	the student wi	ll be able t	0				
CO 1	Describe the	e chain	and Co	ompass	survey.								
CO 2	Apply the va	arious	method	ls invol	ved in app	olication of	of levelling tec	chniques					
CO 3	Compute areas and volumes for different field conditions.												
CO 4	Understand different pra	and ap	ply the	e conce ndition	pts of cur s.	ves and u	utilize the Tot	al Station	instrument for				
CO 5	Apply concepts of remote sensing and photogrammetry.												

Unit – 1 Chain and Compass Surveying

Chain surveying: Principles of Chain surveying; Basic definitions; Corrections - Obstacles – Problems. **Compass Surveying:** Prismatic compass – Surveyor's compass – Meridians – Bearings – Magnetic dip and Declination – Compass Traverse – Local Attraction – Problems – Errors in Compass.

Unit – 2 Levelling

Levelling: Basics – Different methods of levelling – Different types of level instruments – Levelling staff – Level field book – Reciprocal Levelling – Calculation of Reduced Levels by Rise and Fall Method and Height of Instrument Method – Related problems

Unit – 3 Areas and Volumes

Areas: Computation of areas from filed notes & plotted figures – Methods of calculation of areas by Mid ordinate rule, Trapezoidal rule, Average ordinate rule and Simpson's rule.

Volumes: computation of volumes by straight volumes of level, Two level, Side hill two level section, Trapezoidal and Prismoidal rule - Computation of volumes of borrow pit by spot levels.

Unit – 4 Curves and Total Station

Curves: Principle of Simple & Compound curves – Setting out of Simple curves by offsets from Long chord, Rankine's One Theodolite and Two Theodolite methods – Reverse Curves & its components.

Total Station: Introduction – Functions – Principles – Handling & Setting of Total Station Instrument – Measuring of Horizontal and Vertical angles – Measuring of Areas by Total Station.

Unit - 5 Photogrammetry and Remote Sensing

Photogrammetry: Basic concepts – Perspective geometry of aerial photograph – Relief and Tilt displacements – Terrestrial Photogrammetry – Flight planning – Stereoscopy.

Remote Sensing: Introduction –Electromagnetic Spectrum - Interaction of electromagnetic radiation with the atmosphere and earth surface- Remote sensing data acquisition: platforms and sensors; Visual image interpretation;

Textbooks

- 1. Madhu, N, Sathikumar, R and Satheesh Gopi, "Advanced Surveying: Total Station, GIS, GPS and Remote Sensing", Pearson Education India, New Delhi
- 2. N.N. Basak, "Surveying & Levelling", Tata McGraw-Hill Companies, Inc. New York.

- 1. Bhavikatti, S.S, "Surveying and Levelling, Vol. I and II", I.K. International Publishing House Pvt. Ltd., New Delhi.
- 2. Chandra, A.M, "Higher Surveying", New Age International (P) Limited, Publishers, New Delhi.
- 3. Arora, K.R, "Surveying, Vol-I, II and III", Standard Book House U-O Rajsons Publications Pvt. Ltd., New Delhi.
- 4. Manoj, K. Arora and Badjatia, "Geomatics Engineering", Nem Chand & Bros. Publishers, Roorkee.
- 5. Anji Reddy, M, "Remote sensing and Geographical information system", B.S. Publications, Hyderabad.
- 6. Dr. B.C. Punmia, Ashok Kumar Jain & Arun Kumar Jain, "Surveying and Levelling Vol. I, II & III", Laxmi Publications, New Delhi.

Course Title	Building	Mate	rials a	nd coi	nstruction	n B. Tech, CE 3 rd Seme							
Course	Category	L	Т	Р	Credits		Maxin	num Marks	6				
Code						Continu	ous Internal	End	Total				
						Ass	essment	Exam					
1801306	PCC	02	01	00	03		30	70	100				
Mid Exa	m Duration: (02.00 I	Hrs				End l	Exam Dura	ation: 03.00 Hrs				
Course (Objectives:												
• K	Know about load bearing materials.												
• K	 Know about basic cementitious materials. 												
• A	cquiring kno	wledge	e on dif	ferent	types of fi	nishings a	and its compos	sition.					
• K	now about m	asonry	and its	s types.									
• S	tudy about fe	nestrat	ions, co	oncepts	s of green	building a	and intelligent	buildings.					
Course (Dutcomes: C	n succ	essful c	comple	tion of thi	s course,	the student wi	ll be able t	0				
CO 1	Ability to de	escribe	the usa	ge of c	onvention	al materia	als such as sto	ones, Brick	s and Timber.				
CO 2	Understand	the im	portanc	e of ce	mentitious	s material	s like cement,	Mortar an	d concrete.				
CO 3	Differentiate	e about	the Pa	ints, Va	arnishes ar	nd Asbesto	OS.						
CO 4	Translate the knowledge on concepts of green and intelligent buildings and fenestrations,												
	Building amenities.												
CO 5	5 Differentiate the different types of Masonry works and its construction.												

Unit – 1 Load Bearing Materials

Conventional Materials: Stones: classification of rocks – quarrying – dressing – properties – tests for stones. Bricks: composition – manufacturing – classification – qualities –uses – test for bricks. Timber: classification of trees – structure of tree – seasoning – Steel: introduction – types – properties – uses – market forms.

Unit – 2 Cementitious Materials

Cement: Introduction – ingredients – manufacture – types of cement – properties – tests - uses – Mortar: functions – types – properties – uses – tests on mortar. Concrete: Ingredients – functions – w/c ratio – grades – admixtures – test on concrete – properties – uses. RCC: Characteristics – elements - advantages – disadvantages - types of concrete – GGBS concrete - Fiber reinforced concrete – types of fibres – steel fibres – SFRC – properties – applications- Geo-polymer concrete - Self health monitoring concrete.

Unit – 3 Finishing Materials

Paints: Functions – constituents – characteristics – types of paints – defects. Varnishes: Elements – properties – types. Asbestos: Properties – uses – Glass: Constituents – composition – classification – properties – uses. Plastic: classification – properties – uses.

Unit – 4 Masonry Works

Masonry - Stone Masonry - Rubble and Ashlar Masonry - Brick Masonry - Bond - Types of bonds - English and Flemish bonds - Composite masonry - Concrete Masonry - Reinforced masonry - Types of walls - Types of Partition walls - Floors, Roofs, staircase-Classifications.

Unit - 5 Fenestrations, Ventilations and Building Amenities

Types of doors and windows - (Wood, Plywood, Steel and Fiber) – method of installations - Fixtures and fastening for doors and windows – plumbing – Ventilation - Damp proofing- Methods of damp proofing-Concepts of green and intelligent buildings (elementary part only).

Textbooks

- 1. P C Varghese, "Building Materials", PHI Learning Pvt. Ltd., Delhi.
- 2. Gurucharan Singh, "Building construction and Materials", Standard Book House U-O Rajsons Publications Pvt. Ltd., New Delhi.
- 3. Dr. B C Punmia, "Building Construction", Laxmi Publications, New Delhi.

- 1. S C Rangwala, "Engineering Materials", Charotar Publishing House Pvt. Ltd., Anand, Gujarat.
- 2. S K Duggal, "Building Materials:, New Age International (P) Limited, Publishers, New Delhi.
- 3. S. C. Rangwala, "Building Construction", Charotar Publishing House Pvt. Ltd., Anand, Gujarat.

Subject Code	Subject Category	Subject Title	L	Т	Р	IM	EM	Credits
1801403	PCC	Engineering Geology	2	0	0	30	70	2

Course Objectives:

- Student can understand geological knowledge for civil engineering field or projects
- Student can able to observe and identify mineral as well as rocks physical properties
- Student understand soil formation and characteristics.
- Student will able to solve various structural as well as geological mapping before plan of the major engineering projects.

Course Outcomes: On the completion of course students able to

- Identify geology and geological conditions of the project site.
- Find out geological problems after proper investigation of project site.
- Distinguish the characteristics of most of the geological formations and related problems to adopt appropriate solutions of various construction sites.

• To describe and interpret the geological structures in the geological maps, topo- sheetsetc															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3												3		
CO 2		3													
CO 3				2										2	
CO 4			3												2

• To describe and interpret the geological structures in the geological maps, topo- sheets...etc

Unit - 1

Introduction-various branches of geology - scope of geology and importance of geology in civil engineering projects. Weathering definition types of weathering processes, Factors affecting weathering and engineering consideration of weathering, weathering of rocks.

Unit-2

Mineralogy definition – study and classification of mineralogy, Physical properties of minerals, basic of optical mineralogy importance of minerals and their uses.

Unit-3

Petrology definition classification of Rocks-formation of rocks –Megascopic Characteristics of different types of rocks Structures and Texture rocks rock cycle-Igneous rocks -Engineering aspect to granite. Classification of sedimentary rocks and their Structure and Textures of sedimentary rocks-Metamorphic Rocks- Agents and types of metamorphism, structures & textures in metamorphic rocks. Important Distinguishing features of rocks and engineering consideration.

Unit-4

Definition of Structural Geology- Strength Behavior of Rocks- Stress and Strain in rocks. Concept of Rock Deformation & Tectonics. Dip and Strike. Outcrop and width of outcrop. Inliers and Outliers. Main types of discontinuities according to size. Fold Classification Engineering consideration Criteria for their recognition in field. Faults: Classification, recognition in field, effects on outcrops. Joints & Unconformity; Types, Stresses responsible, geotechnical importance.

Unit-5

Geological Hazards- Rock Instability and Slope movement: Concept of sliding blocks. Different controlling factors. Landslides Types of landslide-Ground water: Factors controlling water bearing capacity of rock-Earthquake- Seismic Zone in India.

Geology of dam and reservoir site- Required geological consideration for selecting dam and reservoir site. Failure of Reservoirs.

Text Books

- 1. Parbin Singh, "Engineering and General Geology", S K Kataria & Sons., New Delhi.
- 2. N. Chenna Kesavulu, "Text Book of Engineering Geology", Macmillan Education, Noida.

- 1. P. K. Mukherjee, "Textbook of Geology", World Press Private Limited, Kolkata.
- 2. D. Venkat Reddy, "Engineering Geology", Vikas Publishing, Noida.

Subject Code	Subject Categor y	Subject Title	L	Т	Р	IM	EM	Credits
1801404	PCC	Fluid Mechanics	3	1	0	30	70	4

Course Objectives: The course is designed

- To introduce the basic concepts of Fluids.
- To know their behavioral properties.
- To explain the analysis of the Fluid Flows using primary equations.
- To explain various flow measuring devices
- To explain the concepts of dimensional analysis.

Course Outcomes: Upon the completion of this course, student will be able to,

- Understand definitions of the basic terms used in fluid mechanics.
- Understand the broad principles of fluid statics, kinematics & Dynamics
- Understand classification of flows.
- Apply the continuity momentum and energy principles.
- Apply dimensional analysis.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO
													1	2	3
CO 1	3												2		
CO 2	2														
CO 3	2														
CO 4	3												3		
CO 5		3											3		

Unit - 1

Basic Concepts and Definitions – Distinction between a fluid and a solid; Density, Specific weight, Specific gravity, Kinematic and dynamic viscosity; variation of viscosity with temperature, Newton law of viscosity; vapour pressure, boiling point, cavitations; surface tension, capillarity, Bulk modulus of elasticity, compressibility.

Unit - 2

Fluid Statics - Fluid Pressure: Pressure at a point, Pascals law, pressure variation with temperature, density and altitude. Piezometer, U-Tube Manometer, Single Column Manometer, U-Tube Differential Manometer, Micro manometers. pressure gauges, Hydrostatic pressure and force: horizontal, vertical and inclined surfaces. Buoyancy and stability of floating bodies.

Unit - 3

Fluid Kinematics- Classification of fluid flow : steady and unsteady flow; uniform and nonuniform flow; laminar and turbulent flow; rotational and irrotational flow; compressible and incompressible flow; ideal and real fluid flow; one, two and three dimensional flows; Stream line, path line, streak line and stream tube; stream function, velocity potential function. One-, two- and three -dimensional continuity equations in Cartesian coordinates

Unit - 4

Fluid Dynamics- Surface and body forces; Equations of motion - Euler's equation; Bernoulli's equation – derivation; Energy Principle; Practical applications of Bernoulli's equation : venturimeter, orifice meter and pitot tube; Momentum principle; Forces exerted by fluid flow on pipe bend; Vortex Flow – Free and Forced

Unit - 5

Dimensional Analysis and Dynamic Similitude - Definitions of Reynolds Number, Froude Number, Mach Number, Weber *Number and Euler Number; Buckingham's* π -Theorem.

Text Books

- 1. P. N. Modi and S. M. Seth, "Hydraulics and Fluid Mechanics Including Hydraulics Machines", <u>Standard Book House U-O Rajsons Publications Pvt. Ltd.</u>, New Delhi.
- **2.** S. K. Som and G. Biswas, "Introduction to Fluid Mechanics", Tata McGraw-Hill Companies, Inc. New York.

- 1. Merle C. Potter, David C. Wiggert and Bassem H. Ramadan, "Mechanics of Fluids", Cengage Learning India Private Limited, Noida.
- **2.** Edward J. Shaughnessy, Ira M. Katz, and James P. Schaffer, "Introduction to Fluid Mechanics", Oxford University Press, New Delhi.
- 3. A. K. Mohanty, "Fluid Mechanics:, PHI Learning Pvt. Ltd., Delhi.

KSRM COLLEGE OF ENGINEERING, KADAPA (Autonomous)

Course Title : MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS (R18) (Common to ECE,CSE, CE & ME)

Semester :

L T P C 3 1 0 3

OBJECTIVES:

- To equip the budding engineering student with an understanding of concepts and tools of economic analysis.
- Provide knowledge of managerial economics through differential economics concepts, accounting concepts are necessary to analyze and solve complex problems relating financial related matters in bog industries.
- > An understanding of professional and ethical responsibility and ability to communicate effectively.
- The broad education necessary to understand the impact of engineering solutions in a global and societal context.
- Recognition of the need for, and an ability to engage in life-long learning and to meet contemporary issues.

UNIT – I: INTRODUCTION TO MANAGERIAL ECONOMICS

Definition, nature and scope of Managerial Economics –Demand analysis – Determinants, Law of Demand and its exceptions – Elasticity of Demand – Types and Measurement of Elasticity of Demand – Methods of Demand Forecasting (Statistical mehtods) – Supply Analysis.

UNIT - II: THEORY OF PRODUCTION AND COST ANALYSIS

Production Functions: Law of variable proportion, Isoquants and Isocost, least cost combination of inputs, Returns to Scale and Cobb- Douglas production function. Internal and external economies of scale.

Cost Analysis: Cost concepts – Break-Even Analysis (BEA) – Break Even Point – significance and limitations of BEA.

UNIT - III: INTRODUCTION TO MARKETS AND PRICING

Markets structures: Perfect and Imperfect competition – Features of Perfect Competition, Monopoly, Monopolistic Competition and Oligopoly. Price- Output determination under perfect competition, monopoly and monopolistic competition – Price rigidity in Oligopoly. Methods of pricing – cost plus pricing, marginal cost pricing, skimming pricing,

Methods of pricing – cost plus pricing, marginal cost pricing, sk penetration pricing, differential pricing and administrative pricing.

UNIT - IV: BUSINESS ORGINATIONS AND CAPITAL BUDGETING

Business Organizations: Types of business organizations- Sole Proprietorship, Partnership, Joint Stock Company, Public Ltd and Private Ltd companies, Public Private Partnership

(PPP). Josholy Doglimett 1001/ 03/06/19 Aller Durending Kathering

Capital Budgeting: Types of capital, methods and sources of raising Capital. Capital Budgeting Techniques: Payback Period Method, Accounting Rate of return (ARR) and Net Present Value Method (NPV) (simple problems).

UNIT - V: FINANCIAL ACCOUNTING AND ANALYSIS

Double Entry Book keeping, Journal, Ledger, Trail Balance – Final Accounts (Preparation of Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). Analysis and interpretation of financial statements through ratios (Liquidity, Profitability and Activity Ratios) (Simple problems).

COURSE OUTCOMES: After completion of this course, the student will able to understand various aspects of Managerial Economics and analysis of financial statements and inputs therein will help them to make sound and effective decisions under different economic environment and market situations

TEXT BOOKS:

- 1. Varshney & Maheswari: Managerial Economics, Sultan Chand Publishers, 2009.
- 2. Prasad and K.V.Rao: Financial Accounting, jaibharth Publishers, Vijayawada.

REFERENCES:

- 1. P.L Mehtha: Managerial Economics, Sulthan Chand Publishers
- 2. K K Dewett Managerial Economics ,S. Chand Publishers
- 3. S.P Jain & K.L Narang: Financial Accounting, Kalyani publishers.
- 4. M.Sugunatha Reddy: Managerial Economics and Financial Analysis, Research India Publication, New Delhi, 2013.
- 5. Paul A Samuleson and William nordhaus : Economics, Oxford University Publications.
- 6. M L Jhingan : Micro Economics & Macro Economics, Vrinda Publacations (P) Ltd.

Reinsons forlockg

Sayhunth, deder 3/0/19

K. Mainight 03/6/19

Jaharena V

Subject Code	Subject Category	Subject Title	L	Т	Р	IM	EM	Credits	
1824402	HSNC	Effective Communication	Technical	02	01	00	30	70	03

Unit - 1

Communication – Meaning and Definition – Process – Functions – Objectives – Importance – Essentials of Good Communication – Types of Communication – Communication barriers – Overcoming communication barriers.

Unit - 2

Technical Writing, Grammar and Editing – Technical writing Process, forms of discourse, Writing drafts and revising, Collaborative writing, creating indexes, technical writing style and language. Basics of grammar, study of advanced grammar, editing strategies to achieve appropriate technical style. Introduction to advanced technical communication, Usability, Human factors, Managing technical communication projects, time estimation, Single sourcing, Localization.

Unit - 3

Self Development and Assessment – Self assessment, Awareness, Perception and Attitude, Values and belief, Personal goal setting, career planning, Self-esteem. Managing Time; Personal memory, Rapid reading, Taking notes; Complex problem solving; Creativity.

Unit - 4

Communication and Technical Writing – Public speaking, Group discussion, Oral presentation, Interviews, Graphic presentation, Presentation aids, Personality Development. Writing reports, Project proposals, brochures, newsletters, technical articles, manuals, official notes, business letters, memos, progress reports, minutes of meetings, event reports.

Unit - 5

Ethics – Business ethics, Etiquettes in social and office settings, Email etiquettes, Telephone Etiquettes, Engineering ethics, Managing time, Role and responsibility of engineer, Work culture in jobs, Personal memory, Rapid reading, Taking notes, Complex problem solving, Creativity.

Subject Code	Subject Category	Subject Title	L	Т	Р	IM	EM	Credits
1801405	PCC	Solid Mechanics – 1	3	1	0	30	70	4

Course Objectives: The objective of this course is to provide the student

- Knowledge of stresses, strains and elastic constants of different material and the concept of strain energy.
- Understanding of the shear force and bending moment for different types of beams.
- Ability to evaluate the flexural and shear stress concepts for different materials and shapes of the structure.
- Knowledge on deflection of beam for different materials under various loading conditions by moment area, double integration & Macaulay's method.

Course Outcomes: At the end of the course students will be able to

- Compute the stresses and strains of axially loaded members, elastic constants of different materials.
- Determine shear force and bending moment for determinate beams under transverse loading and draw shear force and bending moment diagrams.
- Determine the bending and shear stress variation for determinate beams.
- Evaluate the slope and deflection of determinate beams for the different end conditions and loading by using different methods such as Double Integration, Macaulay's and Moment Area Method etc.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3												3		
CO 2		3											3		
CO 3			3										3		
CO 4			3										3		
CO 5		3											3		2

• Analyze the effect of torsion on circular shafts and understand the concepts of springs.

Unit – 1

Simple Stresses and Strains- Concept of stress and strain, St. Venant's principle, stress and strain diagram, Elasticity and plasticity – Types of stresses and strains, Hooke's law – stress – strain diagram for mild steel – Working stress – Factor of safety – Lateral strain, Poisson's ratio and volumetric strain – Elastic moduli and the relationship between them – Bars of varying section – composite bars – Temperature stresses.

Strain Energy – Resilience – Gradual, sudden, impact and shock loadings – simple applications.

Unit – 2

Shear Force and Bending moment - Types of supports – Types of beams – Shear force and bending moment diagrams for cantilever, simply supported, over hanging beams with point loads, uniformly distributed load, uniformly varying loads and couples, combination of loads – Relationship between shear force and bending moment and rate of loading at a section of a beam.

Unit – 3

Flexural Stresses-Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/y = E/R - Neutral axis – Determination of bending stresses – Section modulus of rectangular and circular sections (Solid and Hollow), I, T, Angle and Channel sections – Design of simple beam sections.

Shear Stresses- Derivation of formula – Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T and angle sections.

Unit – 4

Deflection of Determinate Beams: Slope, deflection and radius of curvature and their relationship – Strength and stiffness of beams – Finding slope and deflections using Double integration method, Macaulay's method and Moment Area method.

Unit – 5

Torsion of Circular Shafts: Theory of pure Torsion – Derivation of Torsion equation - Assumptions made in pure torsion – Torsional theory applied to hollow and solid circular shafts – Power transmission by shafts.

Springs: Introduction – Types of Springs - Closed and open coiled helical springs under axial loads and axial twist – Springs in series and parallel– Carriage springs.

Text Books

- 1. R. K. Rajput, "A Textbook of Strength of Materials", S. Chand Publishing, New Delhi.
- 2. R. K. Bansal, "A Textbook of Strength of Materials", Laxmi Publications, New Delhi.

- 1. S. S. Bhavikatti, "Strength of Materials", Vikas Publishing, Noida.
- 2. S. P. Timoshenko and D. H. Young, "Elements of Strength of Materials", Eastern Wiley Publications, Noida.
- 3. D. S. Prakash Rao, "Strength of Materials A Practical Approach", Universities Press (India) Private Ltd., Hyderabad.
- 4. B.C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, "Mechanics of Materials", Laxmi Publications, New Delhi.

Subject Code	Subject Category	Subject Title	L	Т	Р	IM	EM	Credits
1801406	РСС	Disaster Preparedness & Planning Management	2	0	0	30	70	2

Course Objectives:

- To Understand basic concepts in Disaster Management
- To Understand Definitions and Terminologies used in Disaster Management
- To Understand Types and Categories of Disasters
- To Understand the Challenges posed by Disasters
- To understand Impacts of Disasters Key Skills

Course Outcomes: At the end of the course students will be able to

- Analyze relationship between Development and Disasters.
- Ability to understand Categories of Disasters
- Apply of Disaster Concepts and Management means
- Understand the responsibilities to society
- Understand different rehabilitation measures in effective zones

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1		2							2	2	2	2	2		
CO 2			2				2		3	2		3			
CO 3		2					2		3	2	3		2	3	
CO 4							2		3	2				2	
CO 5						2	2		2			3		2	

Unit - 1

Introduction -Concepts and definitions: disaster, hazard, vulnerability, risksseverity, frequency and details, capacity, impact, prevention, mitigation.

Unit - 2

Disasters- Disasters classification; natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides, coastal erosion, soil erosion, forest fires etc.); manmade disasters (industrial pollution, artificial flooding in urban areas, nuclear radiation, chemical spills, transportation accidents, terrorist strikes, etc.); hazard and vulnerability profile of India, mountain and coastal areas, ecological fragility.

Unit - 3

Disaster Impacts- Disaster impacts (environmental, physical, social, ecological, economic, political, etc.); health, psycho-social issues; demographic aspects (gender, age, special needs); hazard locations; global and national disaster trends; climate change and urban disasters.

Unit - 4

Disaster Risk Reduction (DRR)- Disaster management cycle – its phases; prevention, mitigation, preparedness, relief and recovery; structural and non-structural measures; risk analysis, vulnerability and capacity assessment; early warning systems, Post-disaster environmental response (water, sanitation, food safety, waste management, disease control, security, communications); sustainable and environmental friendly recovery; reconstruction and development methods.

Environment and Development - Roles and responsibilities of government, community, local institutions, NGOs and other stakeholders; Policies and legislation for disaster risk reduction, DRR programmes in India and the activities of National Disaster Management Authority.

Text Books

- 1. PradeepSahni and MadhaviAriyabandu, "Disaster Risk Reduction in South Asia", PHI Learning Pvt. Ltd., Delhi.
- 2. B. K. Singh, "Handbook of Disaster Management: Techniques and Guidelines", Rajat Publications, Delhi.

- 1. G. K. Ghosh, "Disaster Management", APH Publishing Corporation, New Delhi.
- 2. http://ndma.gov.in/ (Home page of National Disaster Management Authority.
- 3. http://www.ndmindia.nic.in/ (National Disaster management in India, Ministry of HomeAffairs).
- 4. Disaster Medical Systems Guidelines. Emergency Medical Services Authority, State of California, EMSA no.214, June 2003.
- 5. Inter Agency Standing Committee (IASC) (Feb. 2007). IASC Guidelines on Mental Health and Psychosocial Support in Emergency Settings. Geneva: IASC.